
Epidemi Models

Introdution

The importane of epidemiology annot be overstated. In 14th entury Europe the Blak Death

killed 25 million people out of a population of 100 million; the Aztes lost half their population of

3.5 million from smallpox; whilst around 20 million people died in the world pandemi of inuenza

in 1919 (Bailey [2℄). Today the over-riding onern is the spread of HIV/AIDS, to the onsiderable

detriment of the vast numbers of people su�ering from less media-onsious diseases suh as malaria,

shistosomiasis, �lariasis and hookworm disease. Parallel problems in marine and agriulturally

based environments take a similar toll on plant, animal and �sh populations. Human attempts to

ontrol suh epidemiologial disasters an themselves lead to further problems through, for example,

improper use of pestiides and management strategies. Inreasing understanding of the underlying

proesses involved is therefore one of the major problems of our age, and the best way forward is

through the areful use of mathematial modelling.

In general, basi model strutures allow for the development of theoretially based results, whilst

aeptane of epidemiologial reality fores attention bak onto simulation based proedures sine

any mathematial results that might be derived may be too opaque to be useful. Fortunately, the

modelling of infetious diseases involves is a diret paradigm of the study of eologial proesses;

this an be used to onsiderable advantage sine all the approahes developed for one an be arried

over to the other. For example, whilst the `death' of a suseptible automatially gives rise to the

`birth' of an infetive, sine it involves a transfer of state for the same individual, in the parallel

biologial senario prey do not beome predators but merely at as food for them. Though most

epidemi (and biologial) models are by neessity naive desriptors of true infetion (and population)

development, when arefully onstruted they an generate extremely useful qualitative preditions

not only about possible modes of behaviour, but also about the likely e�ets of postulated ontrol

strategies.

Though a wide range of approahes are available, modellers often remain loyal to their own area

of speiality to the detriment of subsequent analyses and the inferenes that stem from them (see

Renshaw [11℄). Deterministi analyses are the simplest to onstrut, and numerial solutions an

easily be obtained via standard pakages suh as Mathad or Matlab. Stohasti analyses, however,

may well exhibit substantially di�erent behaviour, and although the derivation of theoretially

based results an involve the use of speialised approximation tehniques, simulated realisations are

usually trivial to onstrut. If the latter lie lose to the deterministi trajetory, then a deterministi

analysis will be suÆient; otherwise pursuane of the stohasti approah is imperative. Similarly,

many real-life epidemiologial proesses involve a strong spatial omponent, and again stohasti

simulations are easily produed. Finally, beause data are often both expensive and logistially

diÆult to ollet, disrete-time proesses may be used to model ontinuous-time senarios, with

loal transition rates being replaed by binomial-type transition distributions. In pratie, it is vital

to onsider all suh possibilities before seleting the most appropriate model struture for a given

situation.

Simple epidemis

In the simplest type of epidemi model infetion spreads by ontat between members of the om-

munity, and infeted individuals are not removed from irulation by reovery, isolation or death.

Thus all individuals suseptible to the disease must ultimately beome infeted. Suppose we have a

homogeneously mixing group of n + 1 individuals, and that at time t = 0 the epidemi starts with
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just one infeted individual. The remaining n individuals are all assumed to be suseptible to the

infetion. Then sine there are x(t)y(t) possible ontat-pairs between the x(t) suseptibles and

y(t) infetives at time t, eah of whih an turn a suseptible into an infetive at rate �, it follows

that the deterministi rate of deline of suseptibles is given by

dx(t)=dt = ��x(t)y(t) ; (1)

with y(t) = n+ 1� x(t). Although this system an be easily solved to yield

y(t) = (n+ 1)=[1 + n expf�(n+ 1)�tg℄ ; (2)

suh mathematial tratability is a rarity. Moreover, from a stohasti viewpoint the apparently

simple nature of this proess proves to be dangerously deeptive. For not only does the quadrati

infetive birth rate, �y(t)(n + 1 � y(t), produe onsiderable algebrai hassle in determining the

probabilities Pr(y(t) = i) (i = 1; : : : ; n + 1), but the stohasti mean (Haskey [6℄) di�ers from

the deterministi value. This di�erene is exaerbated when we onsider the rate at whih new

infetives our. For the deterministi form of the `epidemi urve', dy(t)=dt, rises higher than

the stohasti one (based on expeted numbers), and then falls away more quikly. So working

with the former an lead to wrong interpretation about the progress of the epidemi. For this

simplest of models, both exat and asymptoti values for the mean and variane of the duration

time (T ) of the epidemi an be easily onstruted (e.g. Renshaw [11℄). In partiular, the oeÆient

of variation CV (T ) � �=[2

p

3 ln(n)℄ remains moderately large even for sizeable values of n, so

quite substantial di�erenes in epidemiologial behaviour an our between separate, but otherwise

idential, groups of individuals. Considerable are is therefore required when attributing unexpeted

results to abnormal virulene or infetiousness, for this ould be due purely to hane utuations.

General epidemis

Suppose we now allow infetives to be removed from irulation at rate  by isolation or death.

Although this does not lead to a ompletely general epidemi that an take aount of migration,

geography of infetion sites, loss of immunity, latent period of infetion, variable parameter values,

et., it does give rise to a model whih is suÆiently realisti to be useful. Denoting z(t) to be

the number of removed infetives by time t and � = =� to be the relative removal rate, with

x(t) + y(t) + z(t) = n, the deterministi equation (1) beomes

dx(t)=dt = ��x(t)y(t)

dy(t)=dt = �x(t)y(t)� y(t) (3)

dz(t)=dt = y(t) :

So an epidemi an build up (i.e. dy(t)=dt > 0) only if x(0) > �. Thus x(0) = � de�nes a (determin-

isti) threshold density of suseptibles below whih an epidemi annot develop, sine infetives are

removed at a faster rate than new infetives are produed. Even for this basi model the epidemi

urve annot be derived exatly, though a good approximation an be obtained provided z=� is

small. Indeed, the elebrated Threshold Theorem of Kermak and MKendrik [8℄ shows that an

initial number of suseptibles � + v is eventually redued to �� v. i.e. to a value as far below the

threshold as it was initially above.

This idea that an outbreak an or annot our as the population size swithes through n is learly

faniful, and highlights the danger of relying on a deterministi approah. What happens is that

the probability that an outbreak ours will hange. In the small time interval (t; t+h) we have the

transition probabilities

Pr[(x; y)! (x� 1; y + 1)℄ = �xyh (infetion) and Pr[(x; y)! (x; y � 1)℄ = yh (removal) ;
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from whih equations an be onstruted for the probabilities p

ij

(t) = Pr[x(t) = i; y(t) = j℄. Suh

equations are extremely diÆult to work with, though methods of deriving solutions through the

saddlepoint approximation (see Renshaw [12℄) are urrently under investigation. However, early

suess was ahieved (Whittle [15℄) by observing that in the opening stages of an epidemi, y(t)

behaves like a simple birth-death proess with parameters n� and . For y(0) = a, this gives rise to

a basi stohasti threshold theorem: if n � � then a major outbreak annot our; if n > � then

a minor or major outbreak ours with probability (�=n)

a

and 1� (�=n)

a

, respetively. Moreover,

the average size of the epidemi is an=(�� n) (n < �) and (�=n)

a

[a�=(n� �)℄ + [1� (�=n)

a

℄(r � a)

(n > �) where r is the unique positive root of the equation a � r + n[1 � exp(�r=�)℄ = 0. If n is

large then the average duration time is approximately 

�1

ln(a + n). Though suh results provide

useful indiators of epidemi development, they are limited on two ounts. First, they provide little

information on how individual realisations will develop, sine probabilities reet `average' behaviour

over all possible outomes, and in pratie we usually observe a single time-series of events. Seond,

diseases whih are modelled by equations more omplex than (3) are likely to be mathematially

intratable, and so interest has to entre around the derivation of approximation proedures; even

then, solutions may be too opaque to yield pratial insight. Fortunately, any stohasti epidemi

model, no matter how omplex, easily yields to omputer simulation, with stohasti trajetories

being produed by generating suessive event-time pairs (see Renshaw [11℄).

In general, denote infetion and removal rates by a(x; y) and b(y), respetively; so here a(x; y) = �xy

and b(y) = y. Then for fZg a sequene of uniform(0,1) pseudo-random numbers, the next event

is an infetion if a=(a + b) � Z, else it is a removal, and the time interval to the next event is

�[ln(Z)℄=(a+ b). Simulating say 100 realisations not only demonstrates the type and variability of

behaviour to be seen in major and minor outbreaks, but plotting spei� features, suh as extintion

times and the maximum number of infetives, enables empirial p.d.f.'s to be onstruted whih

enapsulate the underlying statistial features of the proess. Ball and O'Neill [3℄, for example,

model the HIV/AIDS epidemi by taking a = xy=(x + y). Indeed, suh an approah works just as

easily with highly omplex forms for the rates a(x; y) and b(y) as with simple ones, and appropriate

preision an be ahieved by inreasing the number of runs.

Reurrent epidemis

That the general epidemi produes either a minor outbreak whih then swiftly dies away, or else a

major build-up of infetives whih then slowly subsides, is learly useful for rare diseases sine any

outbreak that does our an be regarded as a single phenomenon. However, more ommon diseases

like measles, hiken-pox, inuenza, diptheria, et., exhibit periodi are-ups with infetion being

sustained at a low level inbetween times by a gradual spread to new suseptibles. The development of

proesses whih an explain suh yli behaviour has aptivated modellers ever sine the pioneering

work of Bartlett [2℄. Not only are suh periodi phenomena universal, but the persistene of the

osillations depends on the the total population size.

Suppose that new suseptibles enter the population at rate �. Then the basi deterministi equations

(3) beome

dx(t)=dt = ��x(t)y(t) + �

dy(t)=dt = �x(t)y(t)� y(t) : (4)

Although these nonlinear equations do not yield a simple solution, onsiderable progress an be

made by examining small departures from the equilibrium values x

�

= =� and y

�

= �= by

writing x(t) = x

�

(1 + u(t)) and y(t) = y

�

(1 + v(t)). For with � = =��, this (loal) linearisation
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shows that for  =

p

f(=�)� (1=4�

2

)g,

v(t) = v(0) exp(�t=2�) os( t)

u(t) = �v(0)(�)

�1=2

exp(�t=2�) os( t� �) : (5)

Thus both the infetive and suseptible populations undergo damped osine waves with period

T = 2�= and phase di�erene � = os

�1

(1=

p

(4�). Whilst for measles outbreaks (for example)

this gives rise to epidemi outbreaks with roughly the right period, the peak-to-peak damping

fator of exp(T=2�) ' 0:6 of the infetive yles towards a steady endemi state ontradits the

epidemiologial fats.

It is an unfortunate aspet of modelling that suh deterministi methods usually get only part of

the story right, more often in the opening (i.e. transient) stages of population development than in

the later (generally persistent) phases. The only way of disovering whih behavioural features are

relevant is to ompare deterministi and stohasti realisations. Denote the birth and death rates of

suseptibles (S) and infetives (I) by �

S

(x; y) = �, �

S

(x; y) = �

I

(x; y) = �(x; y) and �

I

(x; y) = y.

Then for a given sequene of pseudo-random numbers fZg, the (general) algorithm for generating

a stohasti realisation is as follows.

(1) evaluate D(x; y) = �

S

(x; y) + �

S

(x; y) + �

I

(x; y)

(2) obtain next Z

(3) evaluate time of next event t� ln(Z)=D

(4) obtain next Z

(a) if �

S

=D � Z then (x; y)! (x + 1; y)

(b) else if (�

S

+ �

S

)=D � Z then (x; y)! (x� 1; y + 1)

() else (x; y)! (x; y � 1)

(5) output new x, y and t and return to (1).

Simulations with this model an produe sustained yli are-ups with the required frequeny, with

widely varying amplitudes mimiking real-life epidemi behaviour. Indeed, this simple proess even

has the potential for ip-opping between the epidemi and endemi states. The only modi�ation

needed to ensure long-term persistene is to allow the oasional infetive to enter the system (at

some small rate Æ) to ensure that the epidemi restarts should the infetive population die out.

Note that only trivial oding hanges are required to failitate the simulation of general multi-type

proesses.

Natural extensions

Although all the above models take simple mathematial forms, possibilities abound for making

them more realisti. For example, onsiderable attention has been foussed on proesses whih

desribe the ow of host individuals between various states of infetion (e.g. latent, infetious,

immune, arrier, death). These states an be thought of as `ompartments', with an individual's

hange of state being viewed as a migration from one ompartment to another (e.g. Jaquez [7℄).

Provided that for eah ompartment the `birth', `death' and migration rates are hosen deliately,

with areful onsideration being paid to biologial, epidemiologial and environmental reality, then

suh representations an provide a powerful insight into quite omplex diseases whih involve both

multi-stage development and host-vetor interations. Cvjetanovi� [5℄, for example, desribes om-

partmental systems for tetanus, typhoid, holera and diptheria, using 9, 10, 11 and 10 states,

respetively. In suh omplex situations a strong partnership between numerial solution of the

deterministi equations and stohasti simulations is vital if meaningful onlusions onerning

population ontrol and development are to be drawn.

A good illustration of how simple models an be usefully extended in this way is provided by Aron
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and May's [1℄ aount of the transmission and maintenane of malaria. This an be modelled as a

two-state system whih fousses on the role played by the basi reprodutive rate of the parasite

and on the dynamis of the prevalene of infetion between humans and mosquitoes. The basi

deterministi model may be written in the form

dx=dt = �y(1� x)� rx (� = abM=N)

dy=dt = ax(1� y)� �y

where: x and y are the proportions of the human and female mosquito populations that are infeted;

N and M are the (onstant) sizes of the human and female mosquito populations; a is the bite

rate of a single mosquito; b is the proportion of infeted bites that produe an infetion; r is the

individual reovery rate for humans; and � is the individual death rate for mosquitoes. Although

this model fails to take aount of the di�erent developmental stages of the parasite, it does ontain

the essentials of the transmission proess and enables distintions to be made between patterns

found in various sets of data from di�erent geographi regions. Denoting ! = �=�, the equilibrium

values

x

�

= (R� 1)=(R+ !) and y

�

= (R� 1)!=R(1 + !)

involve the `basi reprodutive rate' R of the parasite, whih is essentially the number of seondary

ases of infetion generated by a single individual. If R < 1 then the disease will be unable to sustain

itself; whilst the more R exeeds 1 the greater is the resistane of the infetion to eradiation (see

Renshaw [11℄). However, on using their parameter values, stohasti realisations do not reprodue

observed severe upsurges in new malaria ases, and a greater degree of realism is needed for this to

be ahieved. One way is to inorporate a utuating environment into the proess, by letting the

total mosquito population vary seasonally with random amplitude. Another is to inorporate the

inubation period of the parasite within the mosquito, thereby invoking a time-lag situation.

Given the potentially large number of suh possibilities, it is vital to be able to onstrut a gen-

eral theoretial framework whih aounts for both demographi and environmental stohastiity.

Marion et al. [9℄ onstrut suh an approah by onsidering some simple models of environmen-

tal stohastiity in terms of a non-linear model for nematode infetions in ruminants (proposed by

Roberts and Grenfell [14℄). This is partiularly suitable sine it aptures the essene of more ompli-

ated formulations of parasite demography and herd immunity found in the literature. Demographi

stohastiity is shown to be important in terms of extintion events and equilibriummodel behaviour

(the endemi regime), but muted in a transitory managed regime where the system is periodially

perturbed. Whilst allowing for deterministi and stohasti utuations in the model parame-

ters shows the ruial importane of environmental utuations. Analyti tools explored inlude

moment losure, stohasti loal linearisation, the use of the mean-reverting Ornstein-Uhlenbek

proess, stohasti di�erential equations, and the inorporation of weather data to investigate real

e�ets of miro-limati utuations.

Moreover, if we are to gain proper understanding of the mehanis and ontrol of infetious dis-

eases then we have to progress beyond the onvenient mathematial assumption that individuals

mix homogeneously over the whole region available to them. Disease is spread by two di�erent

mehanisms (see Renshaw [12℄): by migration to a di�erent loation (e.g. movement of rabid foxes,

road transport of infeted attle); or, through ross-infetion, either loally (e.g. between neigh-

bouring plants) or globally (e.g. via aerosol dispersion). To date the severity of the mathematial

problems assoiated with ombining reent non-spatial stohasti developments, as outlined above,

with spatial interation has prevented `real-world' suess, most investigations being based on sim-

ple idealisations. However, not only are spae-time data now beoming inreasingly plentiful over

a huge range of spatial sale, but there is a fast-growing publi awareness of the importane of

takling huge transmission systems, as exempli�ed by the great gerbil/ea transmission of plague
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in Kazakhstan (Marshall et al. [10℄). There is therefore a strong inentive to e�et a rapid injetion

of progress into the development of assoiated spae-time stohasti theory, large system simulation

proedures, sampling proedures to gather well-de�ned spae-time data, statistial Markov hain

Monte Carlo tehniques to ope with missing data, not to mention muh greater input from biol-

ogists and applied epidemiologists to determine far more preise mehanisms for infetive growth

and spread.
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