
Epidemi
 Models

Introdu
tion

The importan
e of epidemiology 
annot be overstated. In 14th 
entury Europe the Bla
k Death

killed 25 million people out of a population of 100 million; the Azte
s lost half their population of

3.5 million from smallpox; whilst around 20 million people died in the world pandemi
 of in
uenza

in 1919 (Bailey [2℄). Today the over-riding 
on
ern is the spread of HIV/AIDS, to the 
onsiderable

detriment of the vast numbers of people su�ering from less media-
ons
ious diseases su
h as malaria,

s
histosomiasis, �lariasis and hookworm disease. Parallel problems in marine and agri
ulturally

based environments take a similar toll on plant, animal and �sh populations. Human attempts to


ontrol su
h epidemiologi
al disasters 
an themselves lead to further problems through, for example,

improper use of pesti
ides and management strategies. In
reasing understanding of the underlying

pro
esses involved is therefore one of the major problems of our age, and the best way forward is

through the 
areful use of mathemati
al modelling.

In general, basi
 model stru
tures allow for the development of theoreti
ally based results, whilst

a

eptan
e of epidemiologi
al reality for
es attention ba
k onto simulation based pro
edures sin
e

any mathemati
al results that might be derived may be too opaque to be useful. Fortunately, the

modelling of infe
tious diseases involves is a dire
t paradigm of the study of e
ologi
al pro
esses;

this 
an be used to 
onsiderable advantage sin
e all the approa
hes developed for one 
an be 
arried

over to the other. For example, whilst the `death' of a sus
eptible automati
ally gives rise to the

`birth' of an infe
tive, sin
e it involves a transfer of state for the same individual, in the parallel

biologi
al s
enario prey do not be
ome predators but merely a
t as food for them. Though most

epidemi
 (and biologi
al) models are by ne
essity naive des
riptors of true infe
tion (and population)

development, when 
arefully 
onstru
ted they 
an generate extremely useful qualitative predi
tions

not only about possible modes of behaviour, but also about the likely e�e
ts of postulated 
ontrol

strategies.

Though a wide range of approa
hes are available, modellers often remain loyal to their own area

of spe
iality to the detriment of subsequent analyses and the inferen
es that stem from them (see

Renshaw [11℄). Deterministi
 analyses are the simplest to 
onstru
t, and numeri
al solutions 
an

easily be obtained via standard pa
kages su
h as Math
ad or Matlab. Sto
hasti
 analyses, however,

may well exhibit substantially di�erent behaviour, and although the derivation of theoreti
ally

based results 
an involve the use of spe
ialised approximation te
hniques, simulated realisations are

usually trivial to 
onstru
t. If the latter lie 
lose to the deterministi
 traje
tory, then a deterministi


analysis will be suÆ
ient; otherwise pursuan
e of the sto
hasti
 approa
h is imperative. Similarly,

many real-life epidemiologi
al pro
esses involve a strong spatial 
omponent, and again sto
hasti


simulations are easily produ
ed. Finally, be
ause data are often both expensive and logisti
ally

diÆ
ult to 
olle
t, dis
rete-time pro
esses may be used to model 
ontinuous-time s
enarios, with

lo
al transition rates being repla
ed by binomial-type transition distributions. In pra
ti
e, it is vital

to 
onsider all su
h possibilities before sele
ting the most appropriate model stru
ture for a given

situation.

Simple epidemi
s

In the simplest type of epidemi
 model infe
tion spreads by 
onta
t between members of the 
om-

munity, and infe
ted individuals are not removed from 
ir
ulation by re
overy, isolation or death.

Thus all individuals sus
eptible to the disease must ultimately be
ome infe
ted. Suppose we have a

homogeneously mixing group of n + 1 individuals, and that at time t = 0 the epidemi
 starts with
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just one infe
ted individual. The remaining n individuals are all assumed to be sus
eptible to the

infe
tion. Then sin
e there are x(t)y(t) possible 
onta
t-pairs between the x(t) sus
eptibles and

y(t) infe
tives at time t, ea
h of whi
h 
an turn a sus
eptible into an infe
tive at rate �, it follows

that the deterministi
 rate of de
line of sus
eptibles is given by

dx(t)=dt = ��x(t)y(t) ; (1)

with y(t) = n+ 1� x(t). Although this system 
an be easily solved to yield

y(t) = (n+ 1)=[1 + n expf�(n+ 1)�tg℄ ; (2)

su
h mathemati
al tra
tability is a rarity. Moreover, from a sto
hasti
 viewpoint the apparently

simple nature of this pro
ess proves to be dangerously de
eptive. For not only does the quadrati


infe
tive birth rate, �y(t)(n + 1 � y(t), produ
e 
onsiderable algebrai
 hassle in determining the

probabilities Pr(y(t) = i) (i = 1; : : : ; n + 1), but the sto
hasti
 mean (Haskey [6℄) di�ers from

the deterministi
 value. This di�eren
e is exa
erbated when we 
onsider the rate at whi
h new

infe
tives o

ur. For the deterministi
 form of the `epidemi
 
urve', dy(t)=dt, rises higher than

the sto
hasti
 one (based on expe
ted numbers), and then falls away more qui
kly. So working

with the former 
an lead to wrong interpretation about the progress of the epidemi
. For this

simplest of models, both exa
t and asymptoti
 values for the mean and varian
e of the duration

time (T ) of the epidemi
 
an be easily 
onstru
ted (e.g. Renshaw [11℄). In parti
ular, the 
oeÆ
ient

of variation CV (T ) � �=[2

p

3 ln(n)℄ remains moderately large even for sizeable values of n, so

quite substantial di�eren
es in epidemiologi
al behaviour 
an o

ur between separate, but otherwise

identi
al, groups of individuals. Considerable 
are is therefore required when attributing unexpe
ted

results to abnormal virulen
e or infe
tiousness, for this 
ould be due purely to 
han
e 
u
tuations.

General epidemi
s

Suppose we now allow infe
tives to be removed from 
ir
ulation at rate 
 by isolation or death.

Although this does not lead to a 
ompletely general epidemi
 that 
an take a

ount of migration,

geography of infe
tion sites, loss of immunity, latent period of infe
tion, variable parameter values,

et
., it does give rise to a model whi
h is suÆ
iently realisti
 to be useful. Denoting z(t) to be

the number of removed infe
tives by time t and � = 
=� to be the relative removal rate, with

x(t) + y(t) + z(t) = n, the deterministi
 equation (1) be
omes

dx(t)=dt = ��x(t)y(t)

dy(t)=dt = �x(t)y(t)� 
y(t) (3)

dz(t)=dt = 
y(t) :

So an epidemi
 
an build up (i.e. dy(t)=dt > 0) only if x(0) > �. Thus x(0) = � de�nes a (determin-

isti
) threshold density of sus
eptibles below whi
h an epidemi
 
annot develop, sin
e infe
tives are

removed at a faster rate than new infe
tives are produ
ed. Even for this basi
 model the epidemi



urve 
annot be derived exa
tly, though a good approximation 
an be obtained provided z=� is

small. Indeed, the 
elebrated Threshold Theorem of Kerma
k and M
Kendri
k [8℄ shows that an

initial number of sus
eptibles � + v is eventually redu
ed to �� v. i.e. to a value as far below the

threshold as it was initially above.

This idea that an outbreak 
an or 
annot o

ur as the population size swit
hes through n is 
learly

fan
iful, and highlights the danger of relying on a deterministi
 approa
h. What happens is that

the probability that an outbreak o

urs will 
hange. In the small time interval (t; t+h) we have the

transition probabilities

Pr[(x; y)! (x� 1; y + 1)℄ = �xyh (infe
tion) and Pr[(x; y)! (x; y � 1)℄ = 
yh (removal) ;
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from whi
h equations 
an be 
onstru
ted for the probabilities p

ij

(t) = Pr[x(t) = i; y(t) = j℄. Su
h

equations are extremely diÆ
ult to work with, though methods of deriving solutions through the

saddlepoint approximation (see Renshaw [12℄) are 
urrently under investigation. However, early

su

ess was a
hieved (Whittle [15℄) by observing that in the opening stages of an epidemi
, y(t)

behaves like a simple birth-death pro
ess with parameters n� and 
. For y(0) = a, this gives rise to

a basi
 sto
hasti
 threshold theorem: if n � � then a major outbreak 
annot o

ur; if n > � then

a minor or major outbreak o

urs with probability (�=n)

a

and 1� (�=n)

a

, respe
tively. Moreover,

the average size of the epidemi
 is an=(�� n) (n < �) and (�=n)

a

[a�=(n� �)℄ + [1� (�=n)

a

℄(r � a)

(n > �) where r is the unique positive root of the equation a � r + n[1 � exp(�r=�)℄ = 0. If n is

large then the average duration time is approximately 


�1

ln(a + n). Though su
h results provide

useful indi
ators of epidemi
 development, they are limited on two 
ounts. First, they provide little

information on how individual realisations will develop, sin
e probabilities re
e
t `average' behaviour

over all possible out
omes, and in pra
ti
e we usually observe a single time-series of events. Se
ond,

diseases whi
h are modelled by equations more 
omplex than (3) are likely to be mathemati
ally

intra
table, and so interest has to 
entre around the derivation of approximation pro
edures; even

then, solutions may be too opaque to yield pra
ti
al insight. Fortunately, any sto
hasti
 epidemi


model, no matter how 
omplex, easily yields to 
omputer simulation, with sto
hasti
 traje
tories

being produ
ed by generating su

essive event-time pairs (see Renshaw [11℄).

In general, denote infe
tion and removal rates by a(x; y) and b(y), respe
tively; so here a(x; y) = �xy

and b(y) = 
y. Then for fZg a sequen
e of uniform(0,1) pseudo-random numbers, the next event

is an infe
tion if a=(a + b) � Z, else it is a removal, and the time interval to the next event is

�[ln(Z)℄=(a+ b). Simulating say 100 realisations not only demonstrates the type and variability of

behaviour to be seen in major and minor outbreaks, but plotting spe
i�
 features, su
h as extin
tion

times and the maximum number of infe
tives, enables empiri
al p.d.f.'s to be 
onstru
ted whi
h

en
apsulate the underlying statisti
al features of the pro
ess. Ball and O'Neill [3℄, for example,

model the HIV/AIDS epidemi
 by taking a = xy=(x + y). Indeed, su
h an approa
h works just as

easily with highly 
omplex forms for the rates a(x; y) and b(y) as with simple ones, and appropriate

pre
ision 
an be a
hieved by in
reasing the number of runs.

Re
urrent epidemi
s

That the general epidemi
 produ
es either a minor outbreak whi
h then swiftly dies away, or else a

major build-up of infe
tives whi
h then slowly subsides, is 
learly useful for rare diseases sin
e any

outbreak that does o

ur 
an be regarded as a single phenomenon. However, more 
ommon diseases

like measles, 
hi
ken-pox, in
uenza, diptheria, et
., exhibit periodi
 
are-ups with infe
tion being

sustained at a low level inbetween times by a gradual spread to new sus
eptibles. The development of

pro
esses whi
h 
an explain su
h 
y
li
 behaviour has 
aptivated modellers ever sin
e the pioneering

work of Bartlett [2℄. Not only are su
h periodi
 phenomena universal, but the persisten
e of the

os
illations depends on the the total population size.

Suppose that new sus
eptibles enter the population at rate �. Then the basi
 deterministi
 equations

(3) be
ome

dx(t)=dt = ��x(t)y(t) + �

dy(t)=dt = �x(t)y(t)� 
y(t) : (4)

Although these nonlinear equations do not yield a simple solution, 
onsiderable progress 
an be

made by examining small departures from the equilibrium values x

�

= 
=� and y

�

= �=
 by

writing x(t) = x

�

(1 + u(t)) and y(t) = y

�

(1 + v(t)). For with � = 
=��, this (lo
al) linearisation
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shows that for  =

p

f(
=�)� (1=4�

2

)g,

v(t) = v(0) exp(�t=2�) 
os( t)

u(t) = �v(0)(
�)

�1=2

exp(�t=2�) 
os( t� �) : (5)

Thus both the infe
tive and sus
eptible populations undergo damped 
osine waves with period

T = 2�= and phase di�eren
e � = 
os

�1

(1=

p

(4
�). Whilst for measles outbreaks (for example)

this gives rise to epidemi
 outbreaks with roughly the right period, the peak-to-peak damping

fa
tor of exp(T=2�) ' 0:6 of the infe
tive 
y
les towards a steady endemi
 state 
ontradi
ts the

epidemiologi
al fa
ts.

It is an unfortunate aspe
t of modelling that su
h deterministi
 methods usually get only part of

the story right, more often in the opening (i.e. transient) stages of population development than in

the later (generally persistent) phases. The only way of dis
overing whi
h behavioural features are

relevant is to 
ompare deterministi
 and sto
hasti
 realisations. Denote the birth and death rates of

sus
eptibles (S) and infe
tives (I) by �

S

(x; y) = �, �

S

(x; y) = �

I

(x; y) = �(x; y) and �

I

(x; y) = 
y.

Then for a given sequen
e of pseudo-random numbers fZg, the (general) algorithm for generating

a sto
hasti
 realisation is as follows.

(1) evaluate D(x; y) = �

S

(x; y) + �

S

(x; y) + �

I

(x; y)

(2) obtain next Z

(3) evaluate time of next event t� ln(Z)=D

(4) obtain next Z

(a) if �

S

=D � Z then (x; y)! (x + 1; y)

(b) else if (�

S

+ �

S

)=D � Z then (x; y)! (x� 1; y + 1)

(
) else (x; y)! (x; y � 1)

(5) output new x, y and t and return to (1).

Simulations with this model 
an produ
e sustained 
y
li
 
are-ups with the required frequen
y, with

widely varying amplitudes mimi
king real-life epidemi
 behaviour. Indeed, this simple pro
ess even

has the potential for 
ip-
opping between the epidemi
 and endemi
 states. The only modi�
ation

needed to ensure long-term persisten
e is to allow the o

asional infe
tive to enter the system (at

some small rate Æ) to ensure that the epidemi
 restarts should the infe
tive population die out.

Note that only trivial 
oding 
hanges are required to fa
ilitate the simulation of general multi-type

pro
esses.

Natural extensions

Although all the above models take simple mathemati
al forms, possibilities abound for making

them more realisti
. For example, 
onsiderable attention has been fo
ussed on pro
esses whi
h

des
ribe the 
ow of host individuals between various states of infe
tion (e.g. latent, infe
tious,

immune, 
arrier, death). These states 
an be thought of as `
ompartments', with an individual's


hange of state being viewed as a migration from one 
ompartment to another (e.g. Ja
quez [7℄).

Provided that for ea
h 
ompartment the `birth', `death' and migration rates are 
hosen deli
ately,

with 
areful 
onsideration being paid to biologi
al, epidemiologi
al and environmental reality, then

su
h representations 
an provide a powerful insight into quite 
omplex diseases whi
h involve both

multi-stage development and host-ve
tor intera
tions. Cvjetanovi�
 [5℄, for example, des
ribes 
om-

partmental systems for tetanus, typhoid, 
holera and diptheria, using 9, 10, 11 and 10 states,

respe
tively. In su
h 
omplex situations a strong partnership between numeri
al solution of the

deterministi
 equations and sto
hasti
 simulations is vital if meaningful 
on
lusions 
on
erning

population 
ontrol and development are to be drawn.

A good illustration of how simple models 
an be usefully extended in this way is provided by Aron
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and May's [1℄ a

ount of the transmission and maintenan
e of malaria. This 
an be modelled as a

two-state system whi
h fo
usses on the role played by the basi
 reprodu
tive rate of the parasite

and on the dynami
s of the prevalen
e of infe
tion between humans and mosquitoes. The basi


deterministi
 model may be written in the form

dx=dt = �y(1� x)� rx (� = abM=N)

dy=dt = ax(1� y)� �y

where: x and y are the proportions of the human and female mosquito populations that are infe
ted;

N and M are the (
onstant) sizes of the human and female mosquito populations; a is the bite

rate of a single mosquito; b is the proportion of infe
ted bites that produ
e an infe
tion; r is the

individual re
overy rate for humans; and � is the individual death rate for mosquitoes. Although

this model fails to take a

ount of the di�erent developmental stages of the parasite, it does 
ontain

the essentials of the transmission pro
ess and enables distin
tions to be made between patterns

found in various sets of data from di�erent geographi
 regions. Denoting ! = �=�, the equilibrium

values

x

�

= (R� 1)=(R+ !) and y

�

= (R� 1)!=R(1 + !)

involve the `basi
 reprodu
tive rate' R of the parasite, whi
h is essentially the number of se
ondary


ases of infe
tion generated by a single individual. If R < 1 then the disease will be unable to sustain

itself; whilst the more R ex
eeds 1 the greater is the resistan
e of the infe
tion to eradi
ation (see

Renshaw [11℄). However, on using their parameter values, sto
hasti
 realisations do not reprodu
e

observed severe upsurges in new malaria 
ases, and a greater degree of realism is needed for this to

be a
hieved. One way is to in
orporate a 
u
tuating environment into the pro
ess, by letting the

total mosquito population vary seasonally with random amplitude. Another is to in
orporate the

in
ubation period of the parasite within the mosquito, thereby invoking a time-lag situation.

Given the potentially large number of su
h possibilities, it is vital to be able to 
onstru
t a gen-

eral theoreti
al framework whi
h a

ounts for both demographi
 and environmental sto
hasti
ity.

Marion et al. [9℄ 
onstru
t su
h an approa
h by 
onsidering some simple models of environmen-

tal sto
hasti
ity in terms of a non-linear model for nematode infe
tions in ruminants (proposed by

Roberts and Grenfell [14℄). This is parti
ularly suitable sin
e it 
aptures the essen
e of more 
ompli-


ated formulations of parasite demography and herd immunity found in the literature. Demographi


sto
hasti
ity is shown to be important in terms of extin
tion events and equilibriummodel behaviour

(the endemi
 regime), but muted in a transitory managed regime where the system is periodi
ally

perturbed. Whilst allowing for deterministi
 and sto
hasti
 
u
tuations in the model parame-

ters shows the 
ru
ial importan
e of environmental 
u
tuations. Analyti
 tools explored in
lude

moment 
losure, sto
hasti
 lo
al linearisation, the use of the mean-reverting Ornstein-Uhlenbe
k

pro
ess, sto
hasti
 di�erential equations, and the in
orporation of weather data to investigate real

e�e
ts of mi
ro-
limati
 
u
tuations.

Moreover, if we are to gain proper understanding of the me
hani
s and 
ontrol of infe
tious dis-

eases then we have to progress beyond the 
onvenient mathemati
al assumption that individuals

mix homogeneously over the whole region available to them. Disease is spread by two di�erent

me
hanisms (see Renshaw [12℄): by migration to a di�erent lo
ation (e.g. movement of rabid foxes,

road transport of infe
ted 
attle); or, through 
ross-infe
tion, either lo
ally (e.g. between neigh-

bouring plants) or globally (e.g. via aerosol dispersion). To date the severity of the mathemati
al

problems asso
iated with 
ombining re
ent non-spatial sto
hasti
 developments, as outlined above,

with spatial intera
tion has prevented `real-world' su

ess, most investigations being based on sim-

ple idealisations. However, not only are spa
e-time data now be
oming in
reasingly plentiful over

a huge range of spatial s
ale, but there is a fast-growing publi
 awareness of the importan
e of

ta
kling huge transmission systems, as exempli�ed by the great gerbil/
ea transmission of plague
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in Kazakhstan (Marshall et al. [10℄). There is therefore a strong in
entive to e�e
t a rapid inje
tion

of progress into the development of asso
iated spa
e-time sto
hasti
 theory, large system simulation

pro
edures, sampling pro
edures to gather well-de�ned spa
e-time data, statisti
al Markov 
hain

Monte Carlo te
hniques to 
ope with missing data, not to mention mu
h greater input from biol-

ogists and applied epidemiologists to determine far more pre
ise me
hanisms for infe
tive growth

and spread.
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