Epidemic Models

Introduction

The importance of epidemiology cannot be overstated. In 14th century Europe the Black Death
killed 25 million people out of a population of 100 million; the Aztecs lost half their population of
3.5 million from smallpox; whilst around 20 million people died in the world pandemic of influenza
in 1919 (Bailey [2]). Today the over-riding concern is the spread of HIV/AIDS, to the considerable
detriment of the vast numbers of people suffering from less media-conscious diseases such as malaria,
schistosomiasis, filariasis and hookworm disease. Parallel problems in marine and agriculturally
based environments take a similar toll on plant, animal and fish populations. Human attempts to
control such epidemiological disasters can themselves lead to further problems through, for example,
improper use of pesticides and management strategies. Increasing understanding of the underlying
processes involved is therefore one of the major problems of our age, and the best way forward is
through the careful use of mathematical modelling.

In general, basic model structures allow for the development of theoretically based results, whilst
acceptance of epidemiological reality forces attention back onto simulation based procedures since
any mathematical results that might be derived may be too opaque to be useful. Fortunately, the
modelling of infectious diseases involves is a direct paradigm of the study of ecological processes;
this can be used to considerable advantage since all the approaches developed for one can be carried
over to the other. For example, whilst the ‘death’ of a susceptible automatically gives rise to the
‘birth’ of an infective, since it involves a transfer of state for the same individual, in the parallel
biological scenario prey do not become predators but merely act as food for them. Though most
epidemic (and biological) models are by necessity naive descriptors of true infection (and population)
development, when carefully constructed they can generate extremely useful qualitative predictions
not only about possible modes of behaviour, but also about the likely effects of postulated control
strategies.

Though a wide range of approaches are available, modellers often remain loyal to their own area
of speciality to the detriment of subsequent analyses and the inferences that stem from them (see
Renshaw [11]). Deterministic analyses are the simplest to construct, and numerical solutions can
easily be obtained via standard packages such as Mathcad or Matlab. Stochastic analyses, however,
may well exhibit substantially different behaviour, and although the derivation of theoretically
based results can involve the use of specialised approximation techniques, simulated realisations are
usually trivial to construct. If the latter lie close to the deterministic trajectory, then a deterministic
analysis will be sufficient; otherwise pursuance of the stochastic approach is imperative. Similarly,
many real-life epidemiological processes involve a strong spatial component, and again stochastic
simulations are easily produced. Finally, because data are often both expensive and logistically
difficult to collect, discrete-time processes may be used to model continuous-time scenarios, with
local transition rates being replaced by binomial-type transition distributions. In practice, it is vital
to consider all such possibilities before selecting the most appropriate model structure for a given
situation.

Simple epidemics

In the simplest type of epidemic model infection spreads by contact between members of the com-
munity, and infected individuals are not removed from circulation by recovery, isolation or death.
Thus all individuals susceptible to the disease must ultimately become infected. Suppose we have a
homogeneously mixing group of n 4+ 1 individuals, and that at time ¢ = 0 the epidemic starts with



just one infected individual. The remaining n individuals are all assumed to be susceptible to the
infection. Then since there are x(¢)y(t) possible contact-pairs between the z(t) susceptibles and
y(t) infectives at time ¢, each of which can turn a susceptible into an infective at rate 3, it follows
that the deterministic rate of decline of susceptibles is given by

dx(t)/dt = =Bz (t)y(t) (1)
with y(t) = n+ 1 — z(t). Although this system can be easily solved to yield
y(t) = (n+1)/[1 +nexp{—(n+1)5t} , (2)

such mathematical tractability is a rarity. Moreover, from a stochastic viewpoint the apparently
simple nature of this process proves to be dangerously deceptive. For not only does the quadratic
infective birth rate, Sy(t)(n + 1 — y(t¢), produce considerable algebraic hassle in determining the
probabilities Pr(y(t) = i) (i = 1,...,n + 1), but the stochastic mean (Haskey [6]) differs from
the deterministic value. This difference is exacerbated when we consider the rate at which new
infectives occur. For the deterministic form of the ‘epidemic curve’, dy(t)/dt, rises higher than
the stochastic one (based on expected numbers), and then falls away more quickly. So working
with the former can lead to wrong interpretation about the progress of the epidemic. For this
simplest of models, both exact and asymptotic values for the mean and variance of the duration
time (7") of the epidemic can be easily constructed (e.g. Renshaw [11]). In particular, the coefficient
of variation CV(T) ~ 7/[24/3In(n)] remains moderately large even for sizeable values of n, so
quite substantial differences in epidemiological behaviour can occur between separate, but otherwise
identical, groups of individuals. Considerable care is therefore required when attributing unexpected
results to abnormal virulence or infectiousness, for this could be due purely to chance fluctuations.

General epidemics

Suppose we now allow infectives to be removed from circulation at rate v by isolation or death.
Although this does not lead to a completely general epidemic that can take account of migration,
geography of infection sites, loss of immunity, latent period of infection, variable parameter values,
etc., it does give rise to a model which is sufficiently realistic to be useful. Denoting z(¢) to be
the number of removed infectives by time ¢ and p = /5 to be the relative removal rate, with
z(t) + y(t) + z(t) = n, the deterministic equation (1) becomes

(

dzx(t)/dt = —Ba(t)y(t)
dy(t)/dt = Br(t)y(t) —yy(t) (3)
dz(t)/dt = yy(t) -

So an epidemic can build up (i.e. dy(t)/dt > 0) only if 2(0) > p. Thus z(0) = p defines a (determin-
istic) threshold density of susceptibles below which an epidemic cannot develop, since infectives are
removed at a faster rate than new infectives are produced. Even for this basic model the epidemic
curve cannot be derived exactly, though a good approximation can be obtained provided z/p is
small. Indeed, the celebrated Threshold Theorem of Kermack and McKendrick [8] shows that an
initial number of susceptibles p + v is eventually reduced to p — v. i.e. to a value as far below the
threshold as it was initially above.

This idea that an outbreak can or cannot occur as the population size switches through n is clearly
fanciful, and highlights the danger of relying on a deterministic approach. What happens is that
the probability that an outbreak occurs will change. In the small time interval (¢,¢+ h) we have the
transition probabilities

Pr[(z,y) = (x — 1,y + 1)] = fxyh (infection) and Pr[(z,y) — (z,y —1)] = yyh (removal) ,



from which equations can be constructed for the probabilities p;;(t) = Pr{z(t) = i,y(t) = j]. Such
equations are extremely difficult to work with, though methods of deriving solutions through the
saddlepoint approximation (see Renshaw [12]) are currently under investigation. However, early
success was achieved (Whittle [15]) by observing that in the opening stages of an epidemic, y(t)
behaves like a simple birth-death process with parameters nf and v. For y(0) = a, this gives rise to
a basic stochastic threshold theorem: if n < p then a major outbreak cannot occur; if n > p then
a minor or major outbreak occurs with probability (p/n)* and 1 — (p/n)?, respectively. Moreover,
the average size of the epidemic is an/(p —n) (n < p) and (p/n)*lap/(n — p)] +[1 = (p/n)*](r — a)
(n > p) where r is the unique positive root of the equation a — r + n[l — exp(—r/p)] = 0. If n is
large then the average duration time is approximately v~ 'In(a + n). Though such results provide
useful indicators of epidemic development, they are limited on two counts. First, they provide little
information on how individual realisations will develop, since probabilities reflect ‘average’ behaviour
over all possible outcomes, and in practice we usually observe a single time-series of events. Second,
diseases which are modelled by equations more complex than (3) are likely to be mathematically
intractable, and so interest has to centre around the derivation of approximation procedures; even
then, solutions may be too opaque to yield practical insight. Fortunately, any stochastic epidemic
model, no matter how complex, easily yields to computer simulation, with stochastic trajectories
being produced by generating successive event-time pairs (see Renshaw [11]).

In general, denote infection and removal rates by a(z, y) and b(y), respectively; so here a(x,y) = Szy
and b(y) = vy. Then for {Z} a sequence of uniform(0,1) pseudo-random numbers, the next event
is an infection if a/(a +b) < Z, else it is a removal, and the time interval to the next event is
—[In(Z)]/(a+b). Simulating say 100 realisations not only demonstrates the type and variability of
behaviour to be seen in major and minor outbreaks, but plotting specific features, such as extinction
times and the maximum number of infectives, enables empirical p.d.f.’s to be constructed which
encapsulate the underlying statistical features of the process. Ball and O’Neill [3], for example,
model the HIV/AIDS epidemic by taking a = zy/(z + y). Indeed, such an approach works just as
easily with highly complex forms for the rates a(z, y) and b(y) as with simple ones, and appropriate
precision can be achieved by increasing the number of runs.

Recurrent epidemics

That the general epidemic produces either a minor outbreak which then swiftly dies away, or else a
major build-up of infectives which then slowly subsides, is clearly useful for rare diseases since any
outbreak that does occur can be regarded as a single phenomenon. However, more common diseases
like measles, chicken-pox, influenza, diptheria, etc., exhibit periodic flare-ups with infection being
sustained at a low level inbetween times by a gradual spread to new susceptibles. The development of
processes which can explain such cyclic behaviour has captivated modellers ever since the pioneering
work of Bartlett [2]. Not only are such periodic phenomena universal, but the persistence of the
oscillations depends on the the total population size.

Suppose that new susceptibles enter the population at rate o. Then the basic deterministic equations
(3) become

dz(t)/dt = —Bz(t)y(t) +«
dy(t)/dt = Bx(t)y(t) —yy(t) - (4)
Although these nonlinear equations do not yield a simple solution, considerable progress can be

made by examining small departures from the equilibrium values z* = ~/f and y* = a/v by
writing z(t) = z*(1 + u(t)) and y(¢t) = y*(1 + v(t)). For with o = /af, this (local) linearisation



shows that for ¢ = \/{(v/0) — (1/40?)},

v(t) = v(0)exp(—t/20) cos(t)
u(t) = —v(0)(yo) Y exp(—t/20) cos(vt — ) . (5)

Thus both the infective and susceptible populations undergo damped cosine waves with period
T = 27 /v and phase difference § = cos™'(1/y/(4yo). Whilst for measles outbreaks (for example)
this gives rise to epidemic outbreaks with roughly the right period, the peak-to-peak damping
factor of exp(7T/20) ~ 0.6 of the infective cycles towards a steady endemic state contradicts the
epidemiological facts.

It is an unfortunate aspect of modelling that such deterministic methods usually get only part of
the story right, more often in the opening (i.e. transient) stages of population development than in
the later (generally persistent) phases. The only way of discovering which behavioural features are
relevant is to compare deterministic and stochastic realisations. Denote the birth and death rates of
susceptibles (S) and infectives (I) by As(z,y) = a, ps(z,y) = Ar(z,y) = B(x,y) and pr(z,y) = yy.
Then for a given sequence of pseudo-random numbers {7}, the (general) algorithm for generating
a stochastic realisation is as follows.

(1) evaluate D(x,y) = As(z,y) + ps(x,y) + pr(z,y)
(2) obtain next Z
(3) evaluate time of next event ¢t —In(Z)/D
(4) obtain next Z

(a) if \g/D < Z then (z,y) — (x +1,y)

(b) else if (As + ps)/D < Z then (z,y) = (zr — 1,y + 1)

(c) else (z,y) = (x,y — 1)

(5) output new z, y and t and return to (1).

Simulations with this model can produce sustained cyclic flare-ups with the required frequency, with
widely varying amplitudes mimicking real-life epidemic behaviour. Indeed, this simple process even
has the potential for flip-flopping between the epidemic and endemic states. The only modification
needed to ensure long-term persistence is to allow the occasional infective to enter the system (at
some small rate 0) to ensure that the epidemic restarts should the infective population die out.
Note that only trivial coding changes are required to facilitate the simulation of general multi-type
processes.

Natural extensions

Although all the above models take simple mathematical forms, possibilities abound for making
them more realistic. For example, considerable attention has been focussed on processes which
describe the flow of host individuals between various states of infection (e.g. latent, infectious,
immune, carrier, death). These states can be thought of as ‘compartments’, with an individual’s
change of state being viewed as a migration from one compartment to another (e.g. Jacquez [7]).
Provided that for each compartment the ‘birth’, ‘death’ and migration rates are chosen delicately,
with careful consideration being paid to biological, epidemiological and environmental reality, then
such representations can provide a powerful insight into quite complex diseases which involve both
multi-stage development and host-vector interactions. Cvjetanovié [5], for example, describes com-
partmental systems for tetanus, typhoid, cholera and diptheria, using 9, 10, 11 and 10 states,
respectively. In such complex situations a strong partnership between numerical solution of the
deterministic equations and stochastic simulations is vital if meaningful conclusions concerning
population control and development are to be drawn.

A good illustration of how simple models can be usefully extended in this way is provided by Aron
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and May’s [1] account of the transmission and maintenance of malaria. This can be modelled as a
two-state system which focusses on the role played by the basic reproductive rate of the parasite
and on the dynamics of the prevalence of infection between humans and mosquitoes. The basic
deterministic model may be written in the form

de/dt = oy(l—2z)—rz (0 = abM/N)
dy/dt = ax(l—y)— py

where: x and y are the proportions of the human and female mosquito populations that are infected;
N and M are the (constant) sizes of the human and female mosquito populations; a is the bite
rate of a single mosquito; b is the proportion of infected bites that produce an infection; r is the
individual recovery rate for humans; and g is the individual death rate for mosquitoes. Although
this model fails to take account of the different developmental stages of the parasite, it does contain
the essentials of the transmission process and enables distinctions to be made between patterns
found in various sets of data from different geographic regions. Denoting w = «/u, the equilibrium
values

*=(R-1)/(R4+w) and y*=(R-1)w/R(1+w)

involve the ‘basic reproductive rate’ R of the parasite, which is essentially the number of secondary
cases of infection generated by a single individual. If R < 1 then the disease will be unable to sustain
itself; whilst the more R exceeds 1 the greater is the resistance of the infection to eradication (see
Renshaw [11]). However, on using their parameter values, stochastic realisations do not reproduce
observed severe upsurges in new malaria cases, and a greater degree of realism is needed for this to
be achieved. One way is to incorporate a fluctuating environment into the process, by letting the
total mosquito population vary seasonally with random amplitude. Another is to incorporate the
incubation period of the parasite within the mosquito, thereby invoking a time-lag situation.

Given the potentially large number of such possibilities, it is vital to be able to construct a gen-
eral theoretical framework which accounts for both demographic and environmental stochasticity.
Marion et al. [9] construct such an approach by considering some simple models of environmen-
tal stochasticity in terms of a non-linear model for nematode infections in ruminants (proposed by
Roberts and Grenfell [14]). This is particularly suitable since it captures the essence of more compli-
cated formulations of parasite demography and herd immunity found in the literature. Demographic
stochasticity is shown to be important in terms of extinction events and equilibrium model behaviour
(the endemic regime), but muted in a transitory managed regime where the system is periodically
perturbed. Whilst allowing for deterministic and stochastic fluctuations in the model parame-
ters shows the crucial importance of environmental fluctuations. Analytic tools explored include
moment closure, stochastic local linearisation, the use of the mean-reverting Ornstein-Uhlenbeck
process, stochastic differential equations, and the incorporation of weather data to investigate real
effects of micro-climatic fluctuations.

Moreover, if we are to gain proper understanding of the mechanics and control of infectious dis-
eases then we have to progress beyond the convenient mathematical assumption that individuals
mix homogeneously over the whole region available to them. Disease is spread by two different
mechanisms (see Renshaw [12]): by migration to a different location (e.g. movement of rabid foxes,
road transport of infected cattle); or, through cross-infection, either locally (e.g. between neigh-
bouring plants) or globally (e.g. via aerosol dispersion). To date the severity of the mathematical
problems associated with combining recent non-spatial stochastic developments, as outlined above,
with spatial interaction has prevented ‘real-world’ success, most investigations being based on sim-
ple idealisations. However, not only are space-time data now becoming increasingly plentiful over
a huge range of spatial scale, but there is a fast-growing public awareness of the importance of
tackling huge transmission systems, as exemplified by the great gerbil/flea transmission of plague



in Kazakhstan (Marshall et al. [10]). There is therefore a strong incentive to effect a rapid injection
of progress into the development of associated space-time stochastic theory, large system simulation
procedures, sampling procedures to gather well-defined space-time data, statistical Markov chain
Monte Carlo techniques to cope with missing data, not to mention much greater input from biol-
ogists and applied epidemiologists to determine far more precise mechanisms for infective growth
and spread.
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